계량경제학(28)
-
VAR(Vector Autoregressive Models)
VAR 모형은 우리가 흔히 알고 있는 단변량 시계열 모형인 AR 모형을 다변량 시계열 모형으로 확장한 것입니다. 우리가 다변량 모형을 활용하는 이유는 변수들 사이의 상호관계를 모델에 반영하기 위함입니다. 따라서 VAR 모형을 이용해서 하나의 변수에 변동이 발생했을 때 다른변수는 어떻게 변화하는지를 확인할 수 있습니다. 이와 같은 특성은 복잡한 시스템의 동적 관계를 이해하는데 활용이 되며 특히 경제학에서 많이 활용되는 모형입니다.AR모형과 같이 VAR에 활용되는 모든 변수들은 Stationary를 만족해야만이 올바른 모형을 적합시킬 수 있습니다. 따라서 VAR모형에 적합하기전 각 변수들은 차분 등과 같은 방법을 활용하여 Stationary를 만족할 수 있도록 데이터를 변형해야 합니다.기본적인 VAR(p)..
2024.06.17 -
시계열(Time series) > Break
지금까지 시계열 모형을 수립하면서 우리가 가지고 있는 시계열 데이터의 패턴이나 구조적 변화에 대해서는 고려하지 않았습니다. 하지만 실제로는 금융위기, 코로나와 같은 모든 영역에 지대한 영향을 미치는 사건이 발생한다면 데이터가 가지고 있는 구조는 변화할 것입니다. 따라서 지금부터는, 이러한 구조 변화를 Detecting 하는 것과, 구조 변화가 일어난 시점을 감지했다면 구조 변화를 일으킨 사건이 어떻게 우리가 관심있어하는 영역에 얼마나 영향을 미쳤는지를 분석해보겠습니다. 먼저 이번 포스팅에서는 Break Point, 즉 변화가 일어난 구간을 어떻게 감지할 것인가에 대해 통계적 방법을 적용하여 분석해보도록 하겠습니다. Break Point를 알아보기 위해서 ADL(Autoregressive Distribut..
2021.01.05 -
시계열(Time series) > Forecasting
지금까지 다루어 왔던 ARIMA, ARIMAX, SARIMA, SARIMAX를 활용하여, 예측 문제를 해결해보도록 하겠습니다. 먼저 ARIMAX와 SARIMAX를 추정하기 위해선, Univariate 시계열 데이터뿐만 아니라 추가적인 Exogenous 변수가 필요하게 됩니다. 따라서 이번 포스팅에서 활용한 데이터는 기존의 S&P 500 index와 더불어 Nikkei index를 활용하고자 합니다.(이전 포스팅에서와 동일하게 yahoo finance- historical data에서 다운로드 받았습니다.) 최종적으로는, Nikkei index의 return을 예측해보도록 해보겠습니다. 먼저 필요한 Module을 import하고, 함수를 정의하도록 하겠습니다. import pandas as pd impor..
2021.01.02 -
시계열(Time series) > ARIMAX, SARIMA, SARIMAX
이번 포스팅에서는 지금까지 정리했던 내용과 더불어 ARIMAX, SARIMA, SARIMAX를 활용하여, 예측하는 문제를 해결해보도록 하겠습니다. 예측에 앞서 먼저 ARIMAX, SARIMA, SRIMAX개념에 대해서 간단히 정리해보도록 하겠습니다. [ARIMAX(Autoregressive Integrated Moving Average Exogenous Model)] ARIMAX는 일종의 회귀모형으로 볼 수 있습니다. 다만 AR모형과 MA모형을 동시에 포함되게 됩니다. 일반적인 AR이나 MA모형은 Univariate(단변량) 시계열을 표현하는데 적절한 모형이지만 ARIMAX모형은 추가적인 Explanatory variable을 활요함으로써 다변량 시계열 데이터를 활용하기에 적절한 모형입니다. ARIMAX..
2021.01.01 -
시계열(Time series) > Diagnosing Models(ARMA, ARIMA)(2/2)
이전 포스팅(direction-f.tistory.com/68)에 이어서, 시계열 모형을 결정하기 위한 Process에 대해서 정리해보도록 하겠습니다. 이전 포스팅에서 원본 시계열 데이터의 비정상성을 차분을 통해서 정상성을 가진 시계열 데이터로 변환했으며, ACF&PACF 그래프를 활용하여, 대략적으로 모형의 차수를 결정해보았습니다. 이번 포스팅에서는 모형을 추정하고, 진단을 통해서 우리가 가지고 있는 데이터의 타당한 모형을 구축해보겠습니다. [Estimation/Diagnosis] 먼저 일차적으로 차분한 데이터를 활용하여 ARMA(1,1)과 ARMA(5,5)를 Fitting 해보겠습니다. LLR Test 결과를 보면 ARMA(5,5)일 때 Likelihood가 더 높음을 알 수 있습니다. model_re..
2020.12.27 -
시계열(Time series) > Diagnosing Models(ARMA, ARIMA)(1/2)
지난 포스팅(https://direction-f.tistory.com/67)에서 AR(1)모델을 우리는 MA(∞)으로 나타낼 수 있으며, MA(1)모형을 AR(∞)로 표현할 수 있음을 확인했습니다. 이러한 가역성 특징을 활용하여 어떤 시계열 모형울 수립할때, AR모형과 MA모형을 함께 사용하는 것이 효율적인 경우가 많습니다. ARMA모형은 AR모형과 MA모형을 섞어서 일반적으로 아래와 같이 표현됩니다. ARIMA 모형은 ARMA모형과 모양은 거의 유사하지만 우리가 가지고 있는 시계열 데이터에 대해서 차분(differencing)을 하느냐 입니다. ARMA모형은 정상성을 가진 시계열 데이터를 활용하여 모델링을 해야 하기 때문에, 시계열 데이터가 정상성을 가지지 않는다면 차분을 통해 정상 시계열 데이터로 만..
2020.12.27