pytorch(3)
-
LSTM을 활용한 주가 예측
RNN의 경우 예측해야 하는 지점과 이용하는 정보의 시작지점의 차이가 크면, 역전파시 그래디언트의 소실이 커져 효과적으로 학습이 되지 않을 수 있습니다. 이러한 한계를 극복하기 위해서 나온 방법이 LSTM으로 적절하게 과거정보를 잊고 현재정보를 기억하여 그래디언트의 소실을 막으면서 장기간의 데이터를 학습 할 수 있습니다. 따라서, 이번 포스트에서는 LSTM을 활용하여 주가를 한번 예측해보록 하겠습니다. 이번에는 SK이노베이션의 주가정보를 활용하여 예측을 해보겠습니다. 먼저 이전 포스트에서 다뤘던 내용과 같이, 필요한 모듈 및 데이터를 입력하고, 지정한 Seqeunce로 학습 및 예측에 활용할 데이터를 만듭니다. import pandas as pd import numpy as np import torch ..
2020.08.02 -
CNN을 활용한 주가 방향 예측
이번 포스팅에서는 시계열 데이터에 Convolutional neural network을 적용하여 주가 방향을 예측해보도록 하겠습니다. Convolutional neural network은 주로 이미지 분석에 많이 활용되지만, 간간히 주가를 예측하기 위해도 활용되는 것 같습니다. Research paper들을 참조하여 모델을 구성한 것은 아니고, CNN을 활용해보는 정도에 의의를 두고자 합니다. 향후 시간을 내서 paper들을 읽고 체계적으로 구성해보는 것도 좋을 것 같습니다. 이번에는 삼성전자 대신, SKT주가를 활용하고자 합니다. 좀 더 긴 기간의 가격 정보를 활용하고자 하는데, 삼성전자의 경우 액면분할이 이루어진지 꽤 최근이라고 볼 수 있기 때문에 긴 기간의 주가를 활용하기는 부적절하다고 판단했습니다..
2020.07.30 -
RNN을 이용한 주가 예측
시계열 자료를 분석하기 위해서 딥러닝이 최근에는 활발히 적용되고 있습니다. 시계열 정보를 다루는 딥러닝 중에가서 가장 기본적인 RNN을 활용해 주가를 예측(Fitting)해보도록 하겠습니다. 지난번에 했던 단순/다항 회귀분석이나 이번에 작성할 RNN 모형 모두 정확한 예측보다는, 적용될 수 있는 예측방법들이 이러한 것들이 있다는 것을 정리하고자 합니다. 따라서 각 모형에 대한 자세한 이론이나 설명보다는 간단한 모델들을 직접 구현하면서 정리하는데 주안점을 두고 있습니다. 먼저 필요한 Module을 Import하고 크롤링을 통해 수집했던 주가 데이터를 불러옵니다 import pandas as pd import numpy as np import torch import torch.nn as nn import o..
2020.07.22