주가(4)
-
금융 데이터 다루기 > 노이즈 제거(이동평균, 칼만필터(Kalman-filter))
금융 데이터에는 많은 경우 시계열성을 가지고 있고 주가와 같이 하루하루 변동성이 큰 데이터들이 있습니다. 이러한 데이터들을 효과적으로 분석하기 위해서는 Noise를 제거하고 실제로 이 데이터가 가지고 있는 진짜 정보를 추출하는 방법에 대한 기본적인 이해가 필요합니다. [이동평균] 이동평균은 우리가 잘 알고 있는 방법론이고 실제로 주가의 추세를 볼때 활용하는 20일 이동평균선도 이 이동평균의 개념을 활용한 것입니다. 이동평균은 말그대로 시계열 데이터를 3일, 5일, 10일 등 우리가 정한 집합으로 나누고 해당 집합에서의 평균을 이어서 활용하는 것입니다. Pandas를 활용해서 너무나도 쉽게 구할 수 있지만, For loop을 활용해서 구하는 방법도 구현을 해보도록 하겠습니다. import FinanceDa..
2023.08.05 -
Alpha Factor 탐색 > Momentum
주가의 방향을 예측하는데 있어 Momentum을 나타내는 Factor들은 항상 많이 활용되어지고 있는 요인들중에 하나입니다. 이러한 Momentum이 어떻게 보면 군중들이 어디에 집중하고 있고 어디에 쏠리고 있는지를 판단할 수 있는 요소이기 때문입니다. 그리고 결국 주가는 군중들이 결정한다고 본다면 Momentum은 꼭 고려가 되어야할 지표임에는 틀림없습니다. Momentum을 나타내는 지표가 많이 있게지만, 대표적인 지표를 몇개 선정하여 이를 활용해보도록 하겠습니다. 1. RSI(Relative strength index(RSI)) RSI는 0부터 100까지의 숫자를 가지며, 100에 가까울 수록 초과매수가 일어난 것으로 보고있습니다. 따라서 이를 활용하여 단순한 규칙을 만든다면 70이상일 때는 판매하..
2023.07.03 -
Alpha를 찾아서 > 금융 데이터 불러오기
취미로, 재미로 금융 데이터를 분석한다고 해도 금융 데이터를 기반으로 무언가를 예측하고 분석한다는 것은 결국 시장의 움직임을 이겨내 수익을 창출할 수 있는 그 무언가를 찾아 내고자 하는 것이라고 생각합니다. 그 중에서 어떻게 보면 기술적으로는 누구나 할 수 있는 것이 Alpha Factor를 찾아내는 과정일 것입니다. 기업가치를 측정할 때 PER, PBR, EV/EBITDA와 같은 재무지표를 활용하는 것도 어떻게 보면 Alpha Factor을 찾아서 활용하는 것으로 볼 수 있을 것 같습니다. 이런관점에서 보면 결국 Alpha Factor를 찾아내는 과정은 Feature Engineering과 흡사할 것이고 가설과 검증을 통해서 어떤 요소가 Alpha Factor인지 판단해 볼 수 있을 것입니다. 물론 제..
2023.06.27 -
RNN을 이용한 주가 예측
시계열 자료를 분석하기 위해서 딥러닝이 최근에는 활발히 적용되고 있습니다. 시계열 정보를 다루는 딥러닝 중에가서 가장 기본적인 RNN을 활용해 주가를 예측(Fitting)해보도록 하겠습니다. 지난번에 했던 단순/다항 회귀분석이나 이번에 작성할 RNN 모형 모두 정확한 예측보다는, 적용될 수 있는 예측방법들이 이러한 것들이 있다는 것을 정리하고자 합니다. 따라서 각 모형에 대한 자세한 이론이나 설명보다는 간단한 모델들을 직접 구현하면서 정리하는데 주안점을 두고 있습니다. 먼저 필요한 Module을 Import하고 크롤링을 통해 수집했던 주가 데이터를 불러옵니다 import pandas as pd import numpy as np import torch import torch.nn as nn import o..
2020.07.22