계량경제학(21)
-
VAR(Vector Autoregressive Models)
VAR 모형은 우리가 흔히 알고 있는 단변량 시계열 모형인 AR 모형을 다변량 시계열 모형으로 확장한 것입니다. 우리가 다변량 모형을 활용하는 이유는 변수들 사이의 상호관계를 모델에 반영하기 위함입니다. 따라서 VAR 모형을 이용해서 하나의 변수에 변동이 발생했을 때 다른변수는 어떻게 변화하는지를 확인할 수 있습니다. 이와 같은 특성은 복잡한 시스템의 동적 관계를 이해하는데 활용이 되며 특히 경제학에서 많이 활용되는 모형입니다.AR모형과 같이 VAR에 활용되는 모든 변수들은 Stationary를 만족해야만이 올바른 모형을 적합시킬 수 있습니다. 따라서 VAR모형에 적합하기전 각 변수들은 차분 등과 같은 방법을 활용하여 Stationary를 만족할 수 있도록 데이터를 변형해야 합니다.기본적인 VAR(p)..
2024.06.17 -
시계열(Time series) > Break
지금까지 시계열 모형을 수립하면서 우리가 가지고 있는 시계열 데이터의 패턴이나 구조적 변화에 대해서는 고려하지 않았습니다. 하지만 실제로는 금융위기, 코로나와 같은 모든 영역에 지대한 영향을 미치는 사건이 발생한다면 데이터가 가지고 있는 구조는 변화할 것입니다. 따라서 지금부터는, 이러한 구조 변화를 Detecting 하는 것과, 구조 변화가 일어난 시점을 감지했다면 구조 변화를 일으킨 사건이 어떻게 우리가 관심있어하는 영역에 얼마나 영향을 미쳤는지를 분석해보겠습니다. 먼저 이번 포스팅에서는 Break Point, 즉 변화가 일어난 구간을 어떻게 감지할 것인가에 대해 통계적 방법을 적용하여 분석해보도록 하겠습니다. Break Point를 알아보기 위해서 ADL(Autoregressive Distribut..
2021.01.05 -
시계열(Time series) > Diagnosing Models(ARMA, ARIMA)(2/2)
이전 포스팅(direction-f.tistory.com/68)에 이어서, 시계열 모형을 결정하기 위한 Process에 대해서 정리해보도록 하겠습니다. 이전 포스팅에서 원본 시계열 데이터의 비정상성을 차분을 통해서 정상성을 가진 시계열 데이터로 변환했으며, ACF&PACF 그래프를 활용하여, 대략적으로 모형의 차수를 결정해보았습니다. 이번 포스팅에서는 모형을 추정하고, 진단을 통해서 우리가 가지고 있는 데이터의 타당한 모형을 구축해보겠습니다. [Estimation/Diagnosis] 먼저 일차적으로 차분한 데이터를 활용하여 ARMA(1,1)과 ARMA(5,5)를 Fitting 해보겠습니다. LLR Test 결과를 보면 ARMA(5,5)일 때 Likelihood가 더 높음을 알 수 있습니다. model_re..
2020.12.27 -
시계열(Time series) > Diagnosing Models(ARMA, ARIMA)(1/2)
지난 포스팅(https://direction-f.tistory.com/67)에서 AR(1)모델을 우리는 MA(∞)으로 나타낼 수 있으며, MA(1)모형을 AR(∞)로 표현할 수 있음을 확인했습니다. 이러한 가역성 특징을 활용하여 어떤 시계열 모형울 수립할때, AR모형과 MA모형을 함께 사용하는 것이 효율적인 경우가 많습니다. ARMA모형은 AR모형과 MA모형을 섞어서 일반적으로 아래와 같이 표현됩니다. ARIMA 모형은 ARMA모형과 모양은 거의 유사하지만 우리가 가지고 있는 시계열 데이터에 대해서 차분(differencing)을 하느냐 입니다. ARMA모형은 정상성을 가진 시계열 데이터를 활용하여 모델링을 해야 하기 때문에, 시계열 데이터가 정상성을 가지지 않는다면 차분을 통해 정상 시계열 데이터로 만..
2020.12.27 -
시계열(Time series) > Moving average model(이동평균모형)
Moving average(MA) 모형은 앞선 포스팅에서 정리한 AR 모형과 함께 시계열 데이터를 활용한 모형을 수립하는데 활발히 적용되고 있는 모형입니다. AR 모형은 과거의 값을 활용하여 미래를 예측하는데 반해, MA 모형은 과거의 예측 오차를 활용하여 미래를 예측하는데 활용합니다. 가장 기본적은 MA(1) 모형은 다음과 같습니다. AR 모형과 마찬가지로 일반적인 MA(q) 모형은 아래와 같습니다. MA 모형도 AR 모형과 마찬가지로 계수 \theta가 -1과 1사이의 값을 가지게 됩니다. 정상성을 가지는 어떤 AR(1)모델을 우리는 MA(∞)으로 나타낼 수 있으며, MA(1)모형을 AR(∞)로 표현할 수 있습니다. 이러한 성질을 가역성(Invertibility)라고 표현합니다. 즉 AR모형을 과거의..
2020.12.23 -
시계열(Time series) > Autoregressive model(자기회귀모형)
Autoregrssive model(AR model)은 예측하는 문제에 있어 정말 활발히 활용되고 있는 모형입니다. 해당 모형의 기본적인 아이디어는 time t에 일어난 일을 예측하는데 제일 좋은 Predictor는 t-1에서 일어난 일이라는 것입니다. 가장 기본적인 1차 AR model은 아래와 같습니다. 좀 더 고차수를 가지는 AR model은 다음과 같이 표현할 수 있습니다. Backshift operator를 활용하면 아래와 같습니다. 위와 같이 차수 p를 가진 모형을 일반적으로 AR(p) 모형이라고 부릅니다. 전통적인 Regression과 유사하게 생겼지만, 계수 $\phi$가 -1과 1사이의 값을 가진다는 추가적인 제약조건이 필요합니다. Python을 활용하여 AR model을 추정해보겠습니다..
2020.12.21