계량경제학(32)
-
시계열(Time series) > ACF, PACF
시계열 데이터의 성질을 분석하는데 있어서 중요하게 활용되고 있는 것이 상관도표(Correlogram)입니다. Correlogram은 autocorrelation function(ACF)와 partial autocorrelation function(PACF) 중 하나를 그래프로 표현한 것입니다. Correlogram을 활용하여 현 시점의 자료와 시점의 차이(lag)를 가지는 자료를 비교하여 어떤 관계를 가지고 있는지를 분석할 수 있습니다. 즉, Correlogram을 활용하여 시점의 차이의 영향력을 알아볼 수 있습니다. [자기상관함수(Autocorrelation Fucntion, ACF)] 먼저 ACF에 대해서 정리해보도록 하겠습니다. ACF는 $y_t$와 $y_{t+k}$사이에 correlation을 측..
2020.12.19 -
시계열(Time series) > White Noise, Random walk
본격적인 시계열 분석에 들어가기 앞서, 시계열 분석에서 중요한 개념인 백색잡음(White Noise)와 랜덤워크(Random walk) 개념에 대해서 정리해보겠습니다. [백색잡음(White Noise)] 백색잡음은 평균이 0이고 분산이 일정한 상수($\sigma^2$)인 정규분포를 따르며, 시간에 흐름에 따른 다른 백색잡음들과 Correlation이 0인 잡음입니다. 만약 $a_t$가 백색잡음 프로세스를 따른다고 한다면, $a_t$는 아래와 같은 성질을 만족해야 합니다. 만약에 우리가 가지고 있는 시계열 데이터에서 "시계열적인 부분"을 모두 제외한다면 남는 것은 White Noise뿐입니다. 우리가 시계열 분석을 통해 이상적으로 시계열 분석을 수행했다면, 예측 오차는 White Noise를 따를것입니다...
2020.12.06 -
시계열(Time series) > 데이터 핸들링
이번 포스팅에서는 시계열 방법론에 대해서 다루어 보도록 하겠습니다. 시계열 데이터는 하나의 객체에 대해 시간의 흐름에 따른 수집된 데이터입니다. 대표적인 예로는 국가의 GDP, 주가가 있습니다. 시계열 방법론은 GDP나 주가를 예측하는데 활발히 활용되는 방법중에 하나입니다. 추가적으로 계량경제학에서는 시간에 따른 $X$의 변화가 $Y$에 미치는 영향을 분석하는데 시계열 데이터를 많이 활용하게 됩니다. 이러한 것을 dyanmic causal effect라고 부릅니다. dynamic causal effect에 대해서는 차후에 자세히 다루도록 하겠습니다. 이번 포스팅과 앞으로 이어질 몇개의 포스팅에서는 AR, MA, ARIMA, ARIMAX, SARIMA와 같은 예측하기 위한 방법론을 주로 다루도록 하겠습니다..
2020.12.04 -
Experiments and Quasi-Experiments(실험/준실험 연구)3 > Difference-in-Difference(이중차분법)
이번 포스팅에서는 앞서 정리하였던 Instrumental Variable과 더불어 실증연구에서 활발히 활용되고 있는 Difference-in-Difference(DiD)에 대해서 정리해보도록 하겠습니다. DiD는 준실험연구 환경에서 적용되는 방법론이며, 특정한 Intervention이나 Treatment의 효과를 측정하기 위해 적용되는 방법론입니다. Treatement group과 Control group에서의 시간의 흐름에 따른 변화량을 비교함으로써 효과를 추정하게 됩니다. 그림에서 Intervention effect가 바로 DiD를 추정함으로써 얻는 값이 됩니다. DiD 추정값은 아래와 같이 표현될 수 있습니다. 즉 위 추정량은 시간에 따른 Treatment 그룹에서의 변화량과 Control 그룹에서..
2020.11.29 -
Experiments and Quasi-Experiments(실험/준실험 연구)2
지난 포스팅(direction-f.tistory.com/60)에서는, 실험연구에 대한 정의를 간단히 정리해보고, Student-Teacher Achievement Ratio(STAR)데이터를 활용하여 간단한 Treatment 효과를 분석하기 위한 모형을 수립해보았습니다. 이번 포스팅에서는 지난번에 활용했던 간단함 모형에 추가적인 독립변수를 고려하여, 더 정확한 Treatment 효과를 분석해보겠습니다. 이번에 분석해볼 모형은 아래와 같습니다. 변수정의는 아래와 같습니다. experience— 선생님 경력 boy — 남성 여부 lunch— Free lunch 여부 black — African-American 여부 race — 흑인 여부 schoolid— School indicator variables 주의..
2020.11.22 -
Experiments and Quasi-Experiments(실험/준실험 연구)
이번 포스팅에서는, 특정 prgramm이나 정책을 평가하기 위해 많이 활용되고 있는 계량경제 방법론을 정리해보도록 하겠습니다. 기본적인 Concept는 두 그룹을 Random으로 Assign하고, 한 그룹에는 특정 Treatment를 하고(Treatment 그룹), 한 그룹에는 Treatment를 하지 않고(Control group), 두 그룹을 비교하는 것입니다. 이 비교를 통해서 특정 Treatment가 가지는 효과를 분석할 수 있습니다. 사실 현실에서 Random한 그룹에 Treatment를 수행한 데이터를 수집하는 것이 쉽지는 않습니다. 예를 들어 학생의 성적과 한 반의 학생수의 관련성에 대해서 분석을 해본다고 가정하겠습니다. 한 Class의 학생 수는 Random하게 결정되기보다는, 해당 동네의..
2020.11.15