주식(6)
-
TA-Lib을 활용한 기술적 분석 (2/2)
지난 포스팅에 이어서, 이번 포스팅에서도 많이 활용되는 주요지표를 정리하고 talib을 활용하여 어떻게 계산할 수 있는지에 대해서 다루어보도록 하겠습니다. [RSI(Relative Strength Index)]RSI는 지난번에도 다룬적이 있지만, 기술적분석에서 활발히 활용되는 지표로, 현재 주가의 움직임이 어떠한 속도로 움직이고 있는지를 측정하는 지표입니다. 이를 활용해서, 과매수가 이루어지고 있는지 과매도가 이루어지고 있는지 확인할 수 있습니다. 보통 RSI 70~80 이상을 과매수, RSI 20~30 이하를 과매도 상태로 판단하게 됩니다. RSI의 계산 수식은 아래와 같습니다.여기서 RS는 특정기간에 평균 상승폭을 평균 하락폭으로 나눈 값입니다. 수식에서 확인할 수 있듯이 RS는 증가폭이 커지면 ..
2024.05.12 -
TA-Lib을 활용한 기술적 분석 (1/2)
TA-Lib은 기술적 분석을 위해, 주요 지표들을 쉽게 다룰수 있도록 지원해주는 Python 패키지입니다. 이 패키지에 대해서 간략하게 소개한적이 있지만( https://direction-f.tistory.com/110) 구체적인 활용예시들에 대해서는 다루지 않아, 이번 포스팅에서 주요 지표들과 함께 TA-Lib 활용 방법에 대해서 한번 정리해보겠습니다. TA-lib의 설치는 일반적으로 pip install을 활용하여 설치하기가 어렵습니다. 제가 앞서 정리하면서 활용했던 사이트도 사라지고, 조금씩 설치방법이 변경되는 것으로 보입니다. 따라서 Ta-lib 공식 페이지에서 어떻게 설치하는지 확인하시어 진행하는것이 좋을 것 같습니다. https://pypi.org/project/TA-Lib/ [이동평균선(SM..
2024.04.23 -
시계열 데이터에서 변화점 찾기(change point detection)
시계열 데이터에서 change point는 시계열 데이터의 추세나 분포가 변화하는 지점을 뜻합니다. 따라서 변화점을 감지한다는 것은 어느 특정 지점에서 시계열 데이터의 평균이나 분포가 변화하였는지를 감지하는 것입니다. 이러한 시계열 데이터의 변화점을 감지하는 대표적인 알고리즘과 쉽게 적용할 수 있는 Python 라이브러리를 정리해보겠습니다. [CUSUM (cumulative sum) 방법] 해당 방법론은 change point 전,후로 평균이 변화한다고 가정하고 그 변화가 일어난 지점을 찾는 방법입니다. 이번 포스팅에서는 Facebook에서 제공한 시계열 분석 패키지 Kats 패키지를 활용하고자 하며, 해당 패키지에서 변화점을 감지하는 순서는 다음과 같습니다. 1) 초기 initial change poi..
2024.03.18 -
Outlier 식별
금융시장에서 Outlier는 그 자체로 중요한 의미를 가질 수도 있고, 어떤 주식에서는 변곡점을 나타낼 수도 있습니다. 또는 그냥 이상현상일 수도 있습니다. 따라서 Outlier처리를 어떻게 할지는 또 다른 어려운 과제지만 먼저 Outlier을 어떻게 식별할지에 대해서 다루어 보도록 하겠습니다. 이번 포스팅에서는 Outlier 식별을 하는데 있어서 고전적인 방법을 다루도록 하겠습니다. 간단하지만 직관적이고 여전히 많이 활용되고 있는 방법입니다. [평균과 표준편차 활용] 시계열 데이터의 경우 rolling할 window를 정하고 해당 window에서 평균과 표준편차를 활용해서 얼마만큼 평균과 차이가 나는지를 확인하는 것입니다. 일반적으로 정규분포를 생각하면 "평균 + 3*표준편차"보다 특정값이 클 확률은 ..
2024.03.13 -
Alpha를 찾아서 > 금융 데이터 다루기
금융 데이터는 기본적으로 시계열적으로 이루어져 있습니다. 이러한 시계열성을 가진 데이터를 다루기 위한 아주 기본적인 pandas활용 방법과 금융 Factor들을 쉽게 계산할 수 있도록 도와주는 패키지에 대해서 다루어보도록 하겠습니다. [Pandas] 사실 Pandas와 Numpy는 너무나도 잘 알려져 있는 패키지이기 때문에 익숙한 내용이지만, 예전에 했던 것을 다시 복기해보는 의미에서 시계열 데이터를 다룰때 유용하게 쓸 수 있는 method들을 정리해보겠습니다. 시계열 데이터를 다루기 위해서는 기본적으로 시차별로 수익률을 계산한다거나, 이번달 주가와 저번달 주가의 차이를 구한다거나 하는 시간의 축을 비교하거나 변경하는 일을 많이 하게 됩니다. Resample method를 활용하면 일별 자료를 월별 자료..
2023.08.01 -
Alpha Factor 탐색 > Value Factor
Value Factor를 활용하여 투자를 하는 사람들은 결국 기업이 가친 가치만큼 주가가 올라가거나 또는 내려간다고 생각을 합니다. 주요한 Value Factor로는 Cash flow yield, Free Cash flow yield, 배당율, Earning yield(주가대비 수익) 등이 있습니다. 정말 많은 Value Factor들이 있기 때문에 무엇을 적용할지를 결정하는 것부터가 중요한 일이라고 볼 수 있을 것입니다. 일단 여기서는 Python을 활용해서 Free Cash flow yield를 계산하는 방법을 다루어보겠습니다. 이 방법을 이용해서 재무정보와 주가 정보를 불러와서 자신이 활용하고 싶은 Factor들을 만들어서 활용하시면 좋을 것 같습니다. [Free Cash flow yield] Ca..
2023.07.20