LSTM을 활용한 주가 예측
RNN의 경우 예측해야 하는 지점과 이용하는 정보의 시작지점의 차이가 크면, 역전파시 그래디언트의 소실이 커져 효과적으로 학습이 되지 않을 수 있습니다. 이러한 한계를 극복하기 위해서 나온 방법이 LSTM으로 적절하게 과거정보를 잊고 현재정보를 기억하여 그래디언트의 소실을 막으면서 장기간의 데이터를 학습 할 수 있습니다. 따라서, 이번 포스트에서는 LSTM을 활용하여 주가를 한번 예측해보록 하겠습니다. 이번에는 SK이노베이션의 주가정보를 활용하여 예측을 해보겠습니다. 먼저 이전 포스트에서 다뤘던 내용과 같이, 필요한 모듈 및 데이터를 입력하고, 지정한 Seqeunce로 학습 및 예측에 활용할 데이터를 만듭니다. import pandas as pd import numpy as np import torch ..
2020.08.02