방향 분석가

방향 분석가

  • 분류 전체보기 (115)
    • 데이터 분석 기본 (27)
    • 계량경제학 (32)
    • 머신러닝 (26)
    • 경영과학 (8)
    • 금융 데이터 분석 (19)
  • 홈
RSS 피드
로그인
로그아웃 글쓰기 관리

방향 분석가

컨텐츠 검색

태그

Python 계량경제학 시계열 Google OR-Tools 금융 선형계획법 주식 도구변수 확률 통계 가설검정 계량경제 회귀분석 주가예측 pytorch 주가 Ta-Lib or-tools 파이썬 머신러닝

최근글

댓글

공지사항

아카이브

bagging(1)

  • Decision Tree - Bagging

    Bagging은 Bootstrap방법을 활용하는 방법으로, Decision Tree 모델의 최적의 성능을 이끌어내는데 많은 기여를 하고 있는 개념입니다. 앞서 정리한 것 처럼 Decision Tree는 상당히 과적합 문제에 취약하게 됩니다. Bagging을 활용하면 이와 같은 문제점을 다소 감소시킬 수 있습니다. Bagging은 Bootstrap aggregation의 약자인데, 이름에서 보는 것과 같이 Bootstrpa을 통해 Sample들을 만들고 여러 모델들의 결과 값을 집계하는 것입니다. 이를 통해 결과값의 안정성 확보를 도모합니다. 예시적으로, n개의 독립된 Sample들 $Z_1$,...,$Z_n$이 있다고 했을 때 이 Sample들의 평균의 Varicance는 $\sigma^2/n$이 되면서..

    2021.10.19
이전
1
다음
티스토리
© 2018 TISTORY. All rights reserved.

티스토리툴바