KDE(2)
-
커널 밀도 추정 기반 Classification
커널 밀도를 추정하게 되면 우리는 데이터에 대한 확률 분포를 추정한 것과 같게 됩니다. 따라서 LDA(direction-f.tistory.com/80?category=954338)에서 분포를 활용하여 Classification을 수행한 것과 동일한 원리로 Classification을 수행할 수 있게 됩니다. 즉 Bayes Rule을 적용하여 Classification을 수행하게 됩니다. Bayes Rule에 따라 아래와 같이 정리되고 이 때 확률은 다음과 같이 정의됩니다. 최종적으로 $Pr(G|X)$는 $Pr(X|G)$와$Pr(G=k)$에 비례하게 되므로, 최종적으로 아래와 같이 정리 됩니다. LDA와 다른 점은 우리는 $f_k(x)$를 KDE로 추정하여 활용한다는 것입니다. Python을 활용하여 추정..
2021.04.19 -
커널 밀도 추정(Kernel Density Estimation, KDE)
Kernel density estimation은 unsupervised learning으로, 밀도 추정 방법 중에 하나입니다. 우리가 가장 흔히 알고 있는 밀도 추정 방법 중에 하는 히스토그램입니다. 다만 히스토그램은 각 계급간 불연속적 이고 계급의 크기나 시작위치에 따라 형태가 쉽게 달라지는 단점이 있습니다. KDE는 말그대로 Kernel을 활용하는 것으로 Kernel Regression본 것과 같이 연속적입니다. 따라서 부드러운 밀도 함수를 도출해낼 수 있습니다. KDE에서 분포를 찾아가는 과정은 아래와 같습니다. Kernel Regression에서 Kernel을 활용한 기본적인 개념은 나(기준)와 가까운 것에 가중치를 주는 것이였습니다. KDE에서도 마찬가지입니다. $x_0$이 있다고 가정해보면 $..
2021.04.12