모델 평가 및 선정 > Bootstrap Method
머신러닝에서 일반적으로 bootstrap 방법은 Trianing dataset이 부족할 때, dataset의 규모를 늘릴 때 많이 활용되는 방법입니다. 통계학관점에서는, 평균과 같은 측정된 통계치에 대한 통계적 검증 및 신뢰성 확보를 위해 활용하곤 합니다. Bootstrap을 수행하는 기본적인 방법은 복원추출을 활용하여 기존 Training data의 수와 똑같은 수의 dataset을 추출하는 것입니다. 만약 N개의 Bootstrap data set을 만든 후 data의 총 합과 같은 어떤 관측값을 도출해본다고 생각해보겠습니다. 원래 하나의 dataset만 있다면 해당 값의 분산을 구하는 것은 어렵지만 Bootstrap을 활용한다면 이러한 것이 가능하게 됩니다. 이와 마찬가지 생각을 모델 Error에도 ..
2021.06.28