방향 분석가

방향 분석가

  • 분류 전체보기 (115)
    • 데이터 분석 기본 (27)
    • 계량경제학 (32)
    • 머신러닝 (26)
    • 경영과학 (8)
    • 금융 데이터 분석 (19)
  • 홈
RSS 피드
로그인
로그아웃 글쓰기 관리

방향 분석가

컨텐츠 검색

태그

Google OR-Tools 주가 주식 pytorch 통계 계량경제학 or-tools Ta-Lib 도구변수 시계열 금융 주가예측 계량경제 확률 머신러닝 가설검정 파이썬 Python 선형계획법 회귀분석

최근글

댓글

공지사항

아카이브

이동평균(1)

  • 금융 데이터 다루기 > 노이즈 제거(이동평균, 칼만필터(Kalman-filter))

    금융 데이터에는 많은 경우 시계열성을 가지고 있고 주가와 같이 하루하루 변동성이 큰 데이터들이 있습니다. 이러한 데이터들을 효과적으로 분석하기 위해서는 Noise를 제거하고 실제로 이 데이터가 가지고 있는 진짜 정보를 추출하는 방법에 대한 기본적인 이해가 필요합니다. [이동평균] 이동평균은 우리가 잘 알고 있는 방법론이고 실제로 주가의 추세를 볼때 활용하는 20일 이동평균선도 이 이동평균의 개념을 활용한 것입니다. 이동평균은 말그대로 시계열 데이터를 3일, 5일, 10일 등 우리가 정한 집합으로 나누고 해당 집합에서의 평균을 이어서 활용하는 것입니다. Pandas를 활용해서 너무나도 쉽게 구할 수 있지만, For loop을 활용해서 구하는 방법도 구현을 해보도록 하겠습니다. import FinanceDa..

    2023.08.05
이전
1
다음
티스토리
© 2018 TISTORY. All rights reserved.

티스토리툴바