RNN을 이용한 주가 예측
시계열 자료를 분석하기 위해서 딥러닝이 최근에는 활발히 적용되고 있습니다. 시계열 정보를 다루는 딥러닝 중에가서 가장 기본적인 RNN을 활용해 주가를 예측(Fitting)해보도록 하겠습니다. 지난번에 했던 단순/다항 회귀분석이나 이번에 작성할 RNN 모형 모두 정확한 예측보다는, 적용될 수 있는 예측방법들이 이러한 것들이 있다는 것을 정리하고자 합니다. 따라서 각 모형에 대한 자세한 이론이나 설명보다는 간단한 모델들을 직접 구현하면서 정리하는데 주안점을 두고 있습니다. 먼저 필요한 Module을 Import하고 크롤링을 통해 수집했던 주가 데이터를 불러옵니다 import pandas as pd import numpy as np import torch import torch.nn as nn import o..
2020.07.22