방향 분석가

방향 분석가

  • 분류 전체보기 (115)
    • 데이터 분석 기본 (27)
    • 계량경제학 (32)
    • 머신러닝 (26)
    • 경영과학 (8)
    • 금융 데이터 분석 (19)
  • 홈
RSS 피드
로그인
로그아웃 글쓰기 관리

방향 분석가

컨텐츠 검색

태그

Python 머신러닝 Google OR-Tools 계량경제학 주가예측 확률 금융 선형계획법 Ta-Lib 시계열 통계 pytorch 회귀분석 or-tools 주가 주식 가설검정 도구변수 파이썬 계량경제

최근글

댓글

공지사항

아카이브

변수선택(1)

  • Shrinkage Method2(Elastic Net, LARS)

    앞선 포스팅(direction-f.tistory.com/76)에서 Shrinkage Method로 Ridge Regressio과 Lasso Regression을 다루었습니다. Ridge Regression같은 경우에는 변수를 선택해주는 모형이라고 보기 어려우나 추정 계수가 Analytics Solution을 가지는 점, 그리고 변수간 상관관계가 있을 때도 상대적으로 잘 작동하는 점에 있어서 장점이 있습니다. Lasso Regression과 같은 경우에는, Closed form solution을 가지고 있지 않기 때문에 해를 구하는데 상대적으로 큰 Resource가 소요될 수 있고 변수간 상관관계가 높으면 하나의 변수만 채택하고 나머지는 0으로 만들어 버리는 경우가 있어 상관관계가 높은 데이터 셋에 적용하..

    2021.01.24
이전
1
다음
티스토리
© 2018 TISTORY. All rights reserved.

티스토리툴바